Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hydroclimate and terrestrial hydrology greatly influence the local community, ecosystem, and economy in Alaska and Yukon River Basin. A high‐resolution simulation of the historical climate in Alaska can provide an important benchmark for climate change studies. In this study, we utilized the Regional Arctic System Model (RASM) and conducted coupled land‐atmosphere modeling for Alaska and Yukon River Basin at 4‐km grid spacing. In RASM, the land model was replaced with the Community Terrestrial Systems Model (CTSM) given its comprehensive process representations for cold regions. The microphysics schemes in the Weather Research and Forecast (WRF) atmospheric model were manually tuned for optimal model performance. This study aims to maintain good model performance for both hydroclimate and terrestrial hydrology, especially streamflow, which was rarely a priority in coupled models. Therefore, we implemented a strategy of iterative testing and optimization of CTSM. A multi‐decadal climate data set (1990–2021) was generated using RASM with optimized land parameters and manually tuned WRF microphysics. When evaluated against multiple observational data sets, this data set well captures the climate statistics and spatial distributions for five key weather variables and hydrologic fluxes, including precipitation, air temperature, snow fraction, evaporation‐to‐precipitation ratios, and streamflow. The simulated precipitation shows wet bias during the spring season and simulated air temperatures exhibit dampened seasonality with warm biases in winter and cold biases in summer. We used transfer entropy to investigate the discrepancy in connectivity of hydrologic and energy fluxes between the offline CTSM and coupled models, which contributed to their discrepancy in streamflow simulations.more » « lessFree, publicly-accessible full text available January 16, 2026
-
Abstract Finding similarities between model parameters across different catchments has proved to be challenging. Existing approaches struggle due to catchment heterogeneity and non‐linear dynamics. In particular, attempts to correlate catchment attributes with hydrological responses have failed due to interdependencies among variables and consequent equifinality. Machine Learning (ML), particularly the Long Short‐Term Memory (LSTM) approach, has demonstrated strong predictive and spatial regionalization performance. However, understanding the nature of the regionalization relationships remains difficult. This study proposes a novel approach to partially decouple learning the representation of (a) catchment dynamics by using theHydroLSTMarchitecture and (b) spatial regionalization relationships by using aRandom Forest(RF) clustering approach to learn the relationships between the catchment attributes and dynamics. This coupled approach, calledRegional HydroLSTM, learns a representation of “potential streamflow” using a single cell‐state, while the output gate corrects it to correspond to the temporal context of the current hydrologic regime. RF clusters mediate the relationship between catchment attributes and dynamics, allowing identification of spatially consistent hydrological regions, thereby providing insight into the factors driving spatial and temporal hydrological variability. Results suggest that by combining complementary architectures, we can enhance the interpretability of regional machine learning models in hydrology, offering a new perspective on the “catchment classification” problem. We conclude that an improved understanding of the underlying nature of hydrologic systems can be achieved by careful design of ML architectures to target the specific things we are seeking to learn from the data.more » « lessFree, publicly-accessible full text available August 1, 2026
-
In applications of offline reinforcement learning to observational data, such as in healthcare or education, a general concern is that observed actions might be affected by unobserved factors, inducing confounding and biasing estimates derived assuming a perfect Markov decision process (MDP) model. In “Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in Partially Observed Markov Decision Processes,” A. Bennett and N. Kallus tackle this by considering off-policy evaluation in a partially observed MDP (POMDP). Specifically, they consider estimating the value of a given target policy in an unknown POMDP, given observations of trajectories generated by a different and unknown policy, which may depend on the unobserved states. They consider both when the target policy value can be identified the observed data and, given identification, how best to estimate it. Both these problems are addressed by extending the framework of proximal causal inference to POMDP settings, using sequences of so-called bridge functions. This results in a novel framework for off-policy evaluation in POMDPs that they term proximal reinforcement learning, which they validate in various empirical settings.more » « less
-
We study off-policy evaluation (OPE) for partially observable MDPs (POMDPs) with general function approximation. Existing methods such as sequential im- portance sampling estimators suffer from the curse of horizon in POMDPs. To circumvent this problem, we develop a novel model-free OPE method by introduc- ing future-dependent value functions that take future proxies as inputs and perform a similar role to that of classical value functions in fully-observable MDPs. We derive a new off-policy Bellman equation for future-dependent value functions as conditional moment equations that use history proxies as instrumental variables. We further propose a minimax learning method to learn future-dependent value functions using the new Bellman equation. We obtain the PAC result, which implies our OPE estimator is close to the true policy value under Bellman completeness, as long as futures and histories contain sufficient information about latent states.more » « less
-
Abstract. High-resolution, spatially distributed process-based (PB) simulators are widely employed in the study of complex catchment processes and their responses to a changing climate. However, calibrating these PB simulators using observed data remains a significant challenge due to several persistent issues, including the following: (1) intractability stemming from the computational demands and complex responses of simulators, which renders infeasible calculation of the conditional probability of parameters and data, and (2) uncertainty stemming from the choice of simplified representations of complex natural hydrologic processes. Here, we demonstrate how simulation-based inference (SBI) can help address both of these challenges with respect to parameter estimation. SBI uses a learned mapping between the parameter space and observed data to estimate parameters for the generation of calibrated simulations. To demonstrate the potential of SBI in hydrologic modeling, we conduct a set of synthetic experiments to infer two common physical parameters – Manning's coefficient and hydraulic conductivity – using a representation of a snowmelt-dominated catchment in Colorado, USA. We introduce novel deep-learning (DL) components to the SBI approach, including an “emulator” as a surrogate for the PB simulator to rapidly explore parameter responses. We also employ a density-based neural network to represent the joint probability of parameters and data without strong assumptions about its functional form. While addressing intractability, we also show that, if the simulator does not represent the system under study well enough, SBI can yield unreliable parameter estimates. Approaches to adopting the SBI framework for cases in which multiple simulator(s) may be adequate are introduced using a performance-weighting approach. The synthetic experiments presented here test the performance of SBI, using the relationship between the surrogate and PB simulators as a proxy for the real case.more » « less
An official website of the United States government

Full Text Available